WO2005026343A1 - 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法 - Google Patents

神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法 Download PDF

Info

Publication number
WO2005026343A1
WO2005026343A1 PCT/JP2004/013043 JP2004013043W WO2005026343A1 WO 2005026343 A1 WO2005026343 A1 WO 2005026343A1 JP 2004013043 W JP2004013043 W JP 2004013043W WO 2005026343 A1 WO2005026343 A1 WO 2005026343A1
Authority
WO
WIPO (PCT)
Prior art keywords
neural stem
galectin
stem cells
promoting
proliferation
Prior art date
Application number
PCT/JP2004/013043
Other languages
English (en)
French (fr)
Inventor
Hideyuki Okano
James Hirotaka Okano
Masanori Sakaguchi
Hidehiro Mizusawa
Satoru Ishibashi
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to US10/571,277 priority Critical patent/US7785596B2/en
Priority to AT04787726T priority patent/ATE505539T1/de
Priority to JP2005513873A priority patent/JP5099288B2/ja
Priority to DE602004032248T priority patent/DE602004032248D1/de
Priority to EP04787726A priority patent/EP1674566B1/en
Publication of WO2005026343A1 publication Critical patent/WO2005026343A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/59Lectins

Definitions

  • the present invention relates to a method for promoting the survival and Z or proliferation and neurite outgrowth of neural stem cells, and a pharmaceutical composition, an assay method, and a screening method containing neural stem cells.
  • neural stem cells cultured in vitro and proliferated are attracting attention as candidates for transplantation materials to replace the neural stem cells whose fetal power is also directly isolated.
  • Neural stem cells are undifferentiated cells that have self-replicating ability and multipotency, and can be supplied in an infinite amount by in vitro culture, so that sufficient donor cells can be supplied.
  • neural stem cells grown using the neurosphere method are particularly useful.
  • Many successful treatment cases have been reported by transplanting to patients with intractable diseases such as cerebral ischemia and neurodegenerative diseases (Nature 422, 688-694, 2003).
  • neural stem cells According to the neurosphere method, the ability of neural stem cells to proliferate outside the body. Under this culture condition, one characteristic of neural stem cells is that the growth rate of cells is very slow compared to other cells. There is. Therefore, in order to obtain the number of neural stem cells used for actual transplantation, it is necessary to improve the proliferation rate. In addition, neurite outgrowth is good for transplanted neural stem cells to function and differentiate into nerves in the patient.
  • the present invention provides a method for promoting survival and Z or proliferation of neural stem cells, and a method thereof. It is an object of the present invention to provide a pharmaceutical composition containing neural stem cells prepared by the method described above and a method for promoting neurite outgrowth when differentiating neural stem cells.
  • neural stem cells proliferated using the neurosphere method are transplanted to a patient having an intractable disease such as cerebral ischemia or a neurodegenerative disease, if the neural stem cell is derived from another individual. Since it is necessary to take measures against rejection in transplanted patients, it is preferable to proliferate the patient's own neural stem cells on the spot.
  • the present invention relates to a neural stem cell proliferation promoter and an SVZ astrocyte proliferation promoter for promoting proliferation of neural stem cells and SVZ astrocytes in vertebrate individuals, as well as nerves.
  • Another object of the present invention is to provide a method for promoting the proliferation of neural stem cells and the method for promoting the proliferation of SVZ astrocytes for promoting the proliferation of stem cells and SVZ astrocytes.
  • Galectin 1 is a lectin that binds to ⁇ -galactoside, and is known to exist both in the cytoplasm and extracellularly.
  • galectin 1 was certainly detected in these culture supernatants.
  • galectin 1 antisense cDNA was forcibly expressed to inhibit galectin 1 activity, proliferation of neural stem cells was markedly suppressed.
  • it has galectin 1 inhibitory activity due to the competitive action on sugar binding
  • the method for promoting the survival, proliferation, or both of neural stem cells in the culture medium includes the step of overexpressing galectin 1 or galectin 3 in the neural stem cells.
  • neural stem cells may be cultured in a culture solution containing galectin 1 or galectin 3.
  • galectin 1 or 3
  • the culture solution may contain a neural stem cell culture supernatant, particularly a -Eurosphere culture supernatant or a 9-cell culture supernatant.
  • Galectin 1 or galectin-3 may also be derived from these culture supernatants.
  • the pharmaceutical composition according to the present invention contains a neural stem cell overexpressing galectin 1 or galectin 3 as an active ingredient, and improves higher-order functions in which damage is caused by cerebral ischemia. It is characterized by.
  • the higher order function may be a motor function or a sensory function.
  • the treatment method according to the present invention improves symptoms derived from cerebral ischemia by transplanting neural stem cells in which galectin 1 or galectin 3 is forcibly expressed in mammals other than humans.
  • Symptoms may be, for example, higher-order dysfunction, motor dysfunction, or sensory dysfunction.
  • the subject of treatment can also be applied to humans.
  • the method for promoting neurite outgrowth when inducing differentiation of neural stem cells in vitro includes a step of overexpressing galectin 1 or galectin 3 in the neural stem cells. Further, this method may be applied to an individual.
  • the neural stem cell proliferation promoter according to the present invention is a neural stem cell proliferation promoter for promoting proliferation of neural stem cells in vertebrate individuals, Or contains galectin-3 as an active ingredient.
  • the method for promoting proliferation of neural stem cells is a method for promoting proliferation of neural stem cells to normal vertebrate individuals, and injecting galectin 1 or galectin 3 into the brain. It is characterized by doing. This method can be applied to both human and non-human vertebrate individuals as long as they are normal individuals.
  • a method for promoting proliferation of neural stem cells is a method for promoting proliferation of neural stem cells to promote proliferation of neural stem cells in vertebrate individuals other than humans, and includes galectin 1 in the brain. Alternatively, galectin 3 may be injected. This method is intended for vertebrate individuals who have a neurological disorder and need neurotherapy, and particularly for vertebrate individuals other than humans, but can also be applied to humans.
  • the SVZ astrocyte growth promoter useful in the present invention is an SVZ astrocyte growth promoter for promoting the growth of SVZ astrocytes in a vertebrate individual, and comprises galectin 1 or galectin. Contains 3 as an active ingredient.
  • the SVZ astrocyte growth promoting method useful in the present invention is an SVZ astrocyte growth promoting method for promoting the proliferation of SVZ astrocytes in a normal vertebrate individual, and is applied to the brain. It is characterized by injecting galectin 1 or galectin 3. This method can be applied to both human and non-human vertebrate individuals as long as they are normal individuals.
  • the SVZ astrocyte growth promoting method according to the present invention is a SVZ astrocyte growth promoting method for promoting the proliferation of SVZ astrocytes in a vertebrate individual other than a human, It may be characterized by injecting galectin 1 or galectin 3. This method is intended for vertebrate individuals who have a neurological disease and need neurotherapy, and particularly for vertebrate individuals other than humans, but is also applicable to humans.
  • An assay method is an assay method for assaying the activity of promoting the survival, proliferation, or both of neural stem cells against a target substance added in a culture solution. It is not possible to grow neural stem cells in a situation where the stem cells have been seeded at a clonal concentration! / Seeding at a clonal concentration using an assay medium in which the target substance is added to the basal medium, and seeding Determining whether the neural stem cells thus grown can grow in the assay medium.
  • This neural stem cell may be a neural stem cell selected using CD15 + as an index. You can also seed at a clonal concentration by adding one neural stem cell per well of the culture dish.
  • the screening method according to the present invention is a screening method for identifying an active substance having an activity of promoting the survival, proliferation, or both of neural stem cells from a plurality of target substances. Then, the active substance is identified by using any of the assay methods described above.
  • the misaligned galectin 1 may also be a CS mutant galectin! /.
  • C-S mutant galectin refers to a mutant galectin 1 protein in which at least one cysteine residue of galectin 1 is mutated to a serine residue.
  • FIG. 1 is a graph showing, together with controls, the formation efficiency of -eurosphere when galectin 1 is forcibly expressed in neural stem cells in Example 2 according to the present invention.
  • FIG. 2 is a graph showing, together with the control, the formation efficiency of -eurosphere when galectin 1 is added to a culture solution of neural stem cells in Example 3 according to the present invention. .
  • FIG. 3 shows the formation efficiency of eurosphere when galectin 3 is added to the culture solution of neural stem cells in Example 3 according to the present invention, and the efficiency when galectin 1 is added. It is a graph compared with the formation efficiency of a mouth sphere.
  • FIG. 4 shows that in Example 4 according to the present invention, EBST was performed after transplanting a neural stem cell (Ga ⁇ 1+) in which galectin 1 was forcibly expressed into an gerbil in which ischemia was induced.
  • the result It is a graph shown together with a rule (G- ⁇ ).
  • FIG. 5 shows a lentiviral vector used in Example 4 according to the present invention.
  • FIG. 6 shows the results of BAT after transplanting nerve stem cells (GAL) in which galectin 1 was forcibly expressed into ischemia-induced gerbils in Example 4 according to the present invention. It is the graph shown with the control (LV).
  • GAL nerve stem cells
  • FIG. 7 shows an anti- ⁇ III -tube obtained by differentiating untreated neural stem cells (A) and neural stem cells (B) in which galectin-1 was forcibly expressed in Example 5 according to the present invention. It is the photograph which carried out the antibody dyeing
  • FIG. 8 is a graph showing the total number of primary-eurospheres formed from neural stem cells isolated from the brain injected with galectin 1 in Example 6 according to the present invention
  • A Ipsi. Neurosphere obtained on the injection hemisphere force, Ctra. Hemisphere force obtained on the opposite side-Eurosphere) (Ga ⁇ 1 Galectin 1 individual injected brain, Saline physiological saline Injected individual brain)
  • B In Example 6 according to the present invention, it is a photograph showing the results of examining the cell proliferation ability in SVZ of the brain injected with galectin-1.
  • C In B, the number of signals is counted on multiple intercepts.
  • FIG. 9 is a graph showing changes in the proportion of cells constituting SVZ by galectin 1 injection in Example 6 according to the present invention.
  • FIG. 10 is a diagram showing the results of examining whether or not galectin 1 injection promotes cell growth delay 1 and cell growth in the mouse brain in Example 6 according to the present invention.
  • Mice were dissected 10 days (A, B) and 30 days (C, D) after the last day of galectin-1 injection, and the brains were isolated.
  • a and C are photographs showing the results of examining the cell proliferation ability of slow-growing cells in SVZ of the brain in Example 6 according to the present invention, and B and D are A and C, respectively. And a graph in which the number of signals is counted on a plurality of sections.
  • the present invention is a method for promoting the survival, proliferation, or both of neural stem cells in a culture medium, characterized by comprising overexpressing galectin 1 or galectin 3 in the neural stem cells.
  • Neural stem cells to be applied are isolated using the Weiss-Eurosphere method or a modified method thereof.
  • the animal species from which the neural stem cells are derived, the site in the central nervous system, and the stage of neural stem cell development are not particularly limited. In the following examples, neural stem cells isolated from the mouse 14-day embryonic forebrain were used.
  • a galectin 1 gene is introduced into a neural stem cell exogenously using a viral vector or a plasmid vector having a transcriptional promoter that functions in the neural stem cell, and is forcedly expressed.
  • cells may be transferred according to a conventional method.
  • a virus vector is used as a vector, a virus particle containing the vector is formed in advance, and the cell is infected with the virus. May be. Any virus can be used as long as it can introduce galectin 1 gene into neural stem cells and forcibly express galectin 1.
  • adenovirus and retrovirus Etc. can be used.
  • Overexpression may be performed by genetic manipulation of the endogenous galectin 1 locus, which is not a foreign gene. For example, by homologous recombination, the promoter region of the endogenous galectin 1 locus is replaced with the promoter region of a gene that constantly expresses, or the structural gene portion of a gene that is constantly expressed. It may be possible to replace with a galectin 1 gene.
  • galectin 3 may be overexpressed in neural stem cells.
  • galectin 1 or galectin 3 may be added to a medium for cultivating neural stem cells.
  • concentration of Galectin 1 or Galectin-3 added is preferably at least the final concentration lOOpgZml, more preferably at least lOOng / ml! /.
  • a medium containing galectin 1 may be added.
  • OP9 cell line or neural stem cell culture supernatant or galectin 1 may be forcibly expressed in an appropriate cell line (eg COS cell line or 293T cell line) and the culture supernatant may be used.
  • galectin 1 or galectin 3 directly into the brain of a vertebrate individual, neural stem cells and Z or SVZ astrocytes originally possessed by the individual can be proliferated.
  • the injection site may be anywhere in the brain! /, But is preferably in the vicinity of a neural stem cell, such as the lateral ventricle.
  • the amount of galectins to be injected is preferably 5 to 100 gZ individuals, more preferably 10 to 20 / z gZ individuals.
  • the form of galectin is not particularly limited, but it is preferably in the form of a solution in which purified galectin is dissolved in a medium, physiological saline, PBS or the like. At that time, it is preferable that the solution is added with 13 mercaptoethanol at 1-10 mM and EDTA at 115 mM.
  • culture supernatant of OP9 cell line or neural stem cell or galectin 1 may be forcibly expressed in an appropriate cell line as described above and the culture supernatant may be used.
  • the target vertebrate may be human or non-human. You can go to healthy normal individuals It may be performed on individuals who have a neurological disorder and need neurotherapy. Administration of galectin to normal individuals is expected to improve neurological function and thus quality of life (QOL). In addition, by administering galectin to patients with intractable diseases such as cerebral ischemia and neurodegenerative diseases, it promotes nerve cell regeneration and alleviates neurological symptoms such as decreased motor function, sensory function, and cognitive function. It can be expected to recover or recover.
  • QOL quality of life
  • the neural stem cells overexpressed galectin 1 or galectin 3 obtained as described above can be used as a therapeutic agent for improving symptoms caused by ischemia in the brain, particularly higher-order functions in which a disorder has occurred.
  • the motor function 'sensory function' recognition function is known as a higher-order function that is damaged by ischemia in the brain. In the following examples, improvement in function was measured using motor function and sensory function as examples.
  • a pharmaceutical composition formed together with a koffa or a carrier As shown in the following Examples, it can be seen that the effect of improving symptoms is more remarkable when neural stem cells overexpressing galectin 1 or galectin 3 are transplanted compared to transplanting normal neural stem cells.
  • galectin 1 or galectin 3 may be administered directly into the brain or administered into blood by intravenous injection.
  • Wild type galectin 1 loses j8-galactoside binding activity within 24 hours in the absence of a reducing agent (eg, ⁇ -mercaptoethanol), but CS mutant type galectin 1 (eg, C 2S, C16S, C42S, C60S , C88S and C130S mutant galectins: 0 has maintained its activity for more than 1 week, indicating that the cysteine residue is in a reduced state is important for maintaining stable sugar-binding activity ( Hirabayashi and Kasai, J Biol Chem 268, 23648-23653) o In this way, C-S mutant galectin has the same j8-galatatoside binding activity as wild-type galectin.
  • a reducing agent eg, ⁇ -mercaptoethanol
  • CS mutant galectin may be used in place of the above wild type galectin in any of the present invention.
  • the C2S mutant is the most stable mutant in the non-reduced state (Hirabayashi and Kasai, J Biol Chem 268, 23648-23653), and is a particularly preferred mutant.
  • a plurality of cysteine residues may be substituted with serine residues.
  • these mutant proteins can be obtained by expressing and purifying mutant genes obtained by using the in vitro mutagenesis method for galectin genes in E. coli (Hirabayashi and Kasai, J.). Biol Chem 268, 23648-23653).
  • the assay method of the present invention it can be assayed whether the substance to be assayed added to the culture medium has an activity of promoting the survival, proliferation, or both of neural stem cells.
  • a basal medium in which the neural stem cell cannot grow is selected.
  • a test medium is prepared by adding a test substance to this basal medium, and neural stem cells are seeded at a clonal concentration. After culturing for an appropriate period, it is determined whether the seeded neural stem cells can proliferate in the assay medium, that is, whether they form colonies. Determine whether it has activity to promote both.
  • the neural stem cells used may be isolated and propagated according to the usual method reported by Weiss et al., Such as the Eurosphere method, but cells isolated using the expression of the cell membrane antigen CD 15 as an indicator are used. It is preferable.
  • CD15-expressing cells can be concentrated by FACS, affinity column, magnetic bead method, etc., using cells isolated from the brain or cells grown by the -Eurosphere method. Since CD15 is probably strongly expressed in neural stem cells that have abundant ability, this method can concentrate the ratio of neural stem cells in the cells to be assayed several times to about 10 times, resulting in stable assay results. Can be obtained.
  • a clonal concentration for example, about 10 to 1000 cells are seeded in a plastic petri dish with a diameter of 10 cm, so that neural stem cells are seeded at a low density in one culture dish. But, for example, each of 96 plastic plastic dishes It is preferable to seed one cell per well, such as seeding cells one by one.
  • the basal medium for example, the culture solutions described in Table 1 of the Examples can be used, and the basal medium can be selected depending on what kind of substance is to be isolated. For example, the ability to grow high-density neural stem cells If a medium that cannot be grown at low density is selected, the reason why low-density growth is not possible is due to a lack of factors secreted by the neural stem cells themselves Therefore, it may be preferable to assay various secretory factors secreted by neural stem cells.
  • the substance to be assayed may be isolated from a culture medium such as neural stem cells or purchased from a commercially available compound library. Basically any substance can be assayed, but a substance that is not toxic to neural stem cell culture is preferred.
  • An assay medium is prepared by adding a substance to be assayed to the basal medium thus selected.
  • Culture of neural stem cells in the assay medium can be performed according to a conventional method. After culturing for about a month for several days, colonies are observed in the assay medium if the test substance has the activity of promoting the survival, proliferation, or both of neural stem cells.
  • mouse 14-day embryos were dissected from the mouse uterus, and the lateral periventricular region was isolated and physically dissociated into single cells using a pipette.
  • a pipette When seeded at a density of 5 ⁇ 10 5 / ml in the culture medium shown in Table 1 and cultured at 37 ° C 5% for one week, a spherical floating cell mass of about 50-200 m was obtained.
  • This cell mass was physically dissociated again into single cells, and sorting was performed at a cell density of 1 100 cells Zwell in a freshly prepared medium using a cell sorter. At that time, in order to reduce the experimental error, the size of cells to be strictly sorted was set to 10-25 m, and dead cells were stained and removed by the PI staining method. Thereafter, the cells were further cultured for 7 days, and the number of formed-Eurosphere (defined as a cell mass of 50 m or more) was measured to determine the formation efficiency. The efficiency of -Eurosphere formation in this Atsy system was used as an indicator of neural stem cell survival and Z or proliferation.
  • OP9CM can be prepared as follows. Wash OP9 cells, usually passaged with ⁇ -MEM containing 20% FCS, several times with PBS, add the medium shown in Table 1, and incubate for 48 hours at 37 ° C, 5% C02. . Then remove the cellular components with a 0.45 m filter and use the culture supernatant as OP9CM.
  • the mouse galectin-lcDNA full-length sequence was cloned into the retroviral expression vector pMY-IRES-EGFP (GAL).
  • GAL retroviral expression vector
  • RV vector only
  • AS galectin lcDNA inserted in the reverse direction
  • SA retroviral vectors and VSV-G expression plasmids were respectively transfected into the retroviral producer cell line 293gp. Then, culture for 48 hours, and each supernatant contains retrovirus. It collect
  • Human recombinant galectin (Genzyme technology) was added to the medium after sorting in Example 1 at 100 pg / ml and Ing / mU 100 ng / ml. The result is shown in figure 2.
  • the culture medium after sorting was used as a culture medium diluted to about 66%.
  • galectin 3 had the same effect as galectin 1, with 3.75% when galectin 1 was added and 3.52% when galectin 3 was added.
  • Gerbils (Meriones unguiculatus), 16-21 weeks old, weighing 60-76 g, were divided into groups of 3 or 4 animals and bred on a 12 hour light-dark cycle. The gerbils were divided into two groups and anesthetized with 2% isoflurane, and the left carotid artery was narrowed with a small pinch cock for 10 minutes to induce ischemia.
  • Symptoms of cerebral infarction were evaluated using an infarct index (stroke index: SI). That is, the following behaviors! /, Give the following points for each state, and total the points of the applicable symptoms. Hair upside down or tremor 1
  • Gerbils are anesthetized with 2% isoflurane and placed in a stereotaxic frame.
  • the striatum at the coordinates from the front about 1. Omm, about 1.5 mm to the side, about 1.5 mm to the abdomen) from the Bredama when the skull is flattened on the skull on the left side where the ischemia was induced Drill a hole in the caudate nucleus to allow insertion of a 101 Milton syringe.
  • EBST was performed to evaluate the motor function of the gerbils used in the experiment.
  • Each gerbil individual was held at the base of the tail and lifted to a height of about 10 cm from the experimental table.
  • the direction and number of swings per minute were measured and this was repeated 3 times daily (3 minutes total).
  • ischemia was induced in the left brain, the rate of swinging to the opposite side, that is, the right side was measured.
  • EBST was performed on the day of induction of ischemia, the day of transplantation of neural progenitor cells, and the 10, 20, and 30 days after transplantation. As shown in FIG. 4, when neural stem cells having galectin-1 (GAL) were used, recovery of motor dysfunction was further observed compared to neural stem cells having only viral vectors (RV).
  • GAL galectin-1
  • RV viral vectors
  • BAT was performed to evaluate the somatosensory function of the gerbils used in the experiment.
  • a lentiviral vector was used.
  • total mRNA was isolated from human neurospheres with TRIzoKinvitrogen)
  • RT-PCR was performed using Superscript2 (Invitrogen) and the following primers.
  • the PCR conditions were KOD + (TOYOBO), denaturation at 94 ° C for 2 minutes, and then 94 ° C for 15 seconds to 60 ° C. C30 seconds—68. 30 cycles of C60 seconds were performed.
  • Primer 1 GCGGCCGCGCCACCATGGCTTGTGGTCTGGTCGC (SEQ ID NO: 0
  • Primer 2 AGAGTGGATCCTTATCAGTCAAAGGCCACACATTTG (SEQ ID NO: 2)
  • the amplified DNA fragment was digested with Notl and BamHl, and CSH-EF-MCS-IRES2- Venus ( Figure 5) Notl—cloned at the BamHl site.
  • a lentivirus expressing galectin 1 was obtained by the method described in the literature (Miyoshi et al., J. Virol, vol. 72, 8150-8157, 1998). It was.
  • a total of four viral component expression plasmids (vector, pMDLg / pRRE, pVSV-G, and pRSV-REV) were transferred to 293T cells, and the cells were allowed to produce virus for a certain period of time and cultured.
  • the virus in the supernatant was purified by ultracentrifugation and added to the medium in which the neurospheres were cultured to infect neural stem cells.
  • the neural stem cells having the retroviral vector pMY-IRES-EGF incorporating the mouse 'galectin lcDNA prepared in Example 2 were subjected to adhesion culture by removing growth factors EGF and FGF from the culture medium. Differentiated. When differentiated cells were stained with / 3 III tubulin, which is a specific marker of neuron, as shown in Fig. 7, the differentiated neural stem cells expressing galectin 1 are controls. It was found that the neural stem cells had significantly extended neurites compared to the differentiated neurons.
  • galectin 1 injection side Ipsi. Ga ⁇ 1
  • galectin 1 injection reverse side Ctra. Ga ⁇ 1
  • physiological saline injection side Ipsi. Saline
  • physiological saline reverse side Ctra. Saline
  • Brain tip force Tissues around the lateral ventricles on both sides were isolated to the intersection of the left and right ventricles without any cortex or hippocampus, and dissociated into single cells. Dissociated cells were seeded on 6-well plates at a concentration of 1000-2000 cells Zml using the above medium containing 20 ⁇ gZml of EGF. After 10-12 days of culture, the total number of primary-eurospheres formed was counted. The results are shown in FIG. 8A.
  • mice injected with galectin 1 showed a strong secondary-eurosphere formation and possibly an ability to euron and glia.
  • galectin 1 increases the number of neural stem cells, and therefore, galectin 1 has the effect of promoting the survival, proliferation, or both of the neural stem cells even in mice. I think that.
  • SVZ subventricular zone
  • mice After injecting galectin 1 into the brain of mice (8 weeks old) for 7 days, a solution dissolved in phosphate buffer containing 0.007% NaOH every 2 hours for 10 hours BrdU (Sigma) was injected intraperitoneally to a final dose of 120 mg / kg body weight. Thirty minutes after the final administration, the mice were fixed by perfusion with a 4% formaldehyde solution, the brain was isolated, further immersed in a 4% formaldehyde solution and further fixed. A 50 / zm section was prepared with a vibratome, rinsed 3 times with PBS, and then incubated with a TNB blocking solution (TNB blocking solution; Vector) for 1 hour.
  • TNB blocking solution TNB blocking solution
  • SVZ SVZ astrocytes function as stem cells, pass through TA cells (transit amplifying cells) in the intermediate differentiation stage, and after cell proliferation, are separated into NB (neuroblasts). It is known to hesitate. Therefore, in order to identify the cell type, cells constituting SVZ were stained using various cell markers on sections of mice injected with galectin 1 and BrdU as described above.
  • the proliferating cells are stained with BrdU, and the rabbit anti-Dlx antibody (Grace
  • Galectin-1 increases NSPG in adult SVZ
  • FIG. 9 is a graph showing the ratio of detected cell types under each experimental condition (A; NB cell Dk + / Mashl—, B; SVZ astrocyte BrdU + / Sox21 + / Dlx). -, C; TA cells
  • galectin-1 injection promoted the growth of SVZ astrocytes in mice. Since some of the SVZ astrocytes function as neural stem cells, this result supports that galectin-1 injection promotes neural stem cell proliferation in mice.
  • Neural stem cells are known to be contained in a group of cells that grow slowly in vivo. Therefore, it was examined whether injection of galectin 1 promotes the growth of slow-growing cells in mice.
  • neural stem cell proliferation promoters and SVZ astrocyte proliferation promoters for promoting proliferation of neural stem cells and SVZ astrocytes and neural stem cells and SVZ astrocytes proliferation It is possible to provide a method for promoting the proliferation of neural stem cells and the method for promoting the proliferation of the SV Z first mouth site for promoting the proliferation.
  • test method for assaying an activity that promotes the survival, proliferation, or both of neural stem cells and a screening method for a substance having an activity that promotes the survival, proliferation, or both of neural stem cells are provided. be able to.

Abstract

【課題】神経幹細胞の生存及び/又は増殖を促進する方法、及びその方法によって作製された神経幹細胞を含む医薬組成物、並びに神経幹細胞の生存及び/又は増殖を促進する因子の検定方法及びスクリーニング方法を提供する。 【解決手段】ガレクチン−1を神経幹細胞内で過剰発現させるか、またはガレクチン−1を含有した培養液で神経幹細胞を培養する。この方法で作製されたガレクチン−1を過剰発現する神経幹細胞を含む医薬組成物、及びガレクチン−1を含む医薬組成物は、脳内虚血によって障害が生じた高次機能を改善する。また、神経幹細胞をクローナルな濃度で播種し、播種した神経幹細胞が、検定対象とする検定培地中で増殖できるかどうかを判定することにより、その因子が神経幹細胞の生存及び/又は増殖を促進するかどうか検定し、この検定方法を用いて神経幹細胞の生存及び/又は増殖を促進する因子をスクリーニングする。

Description

明 細 書
神経幹細胞の生存及び z又は増殖及び神経突起伸張を促進する方法 並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法 技術分野
[oooi] 本発明は、神経幹細胞の生存及び Z又は増殖及び神経突起伸張を促進する方法 並びに神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法に関する。 背景技術
[0002] 障害を起こした中枢神経系の再生は困難であるが、動物実験では胎児組織、特に 神経幹細胞の移植が有用であることが報告されている。しかし、治療に十分な神経 幹細胞を得るには多数の中絶胎児の献体を必要とする上に、胎児の使用に倫理面 での問題があるため、現実的な臨床応用は難 、。
[0003] そこで、胎児力も直接単離した神経幹細胞に代わる移植材料の候補として、体外 で培養し、増殖させた神経幹細胞が注目されて 、る。神経幹細胞は自己複製能と多 分化能を有する未分化な細胞であり、体外で培養することにより無尽蔵に増殖するた め、十分なドナー細胞の供給が可能である。
[0004] 神経幹細胞の体外増殖法は、 Weissらの報告した-ユーロスフィァ法(Science255, 1707-1710, 1992)が一般的であり、ニューロスフェア法を用いて増殖させた神経幹細 胞を、特に脳虚血、神経変性疾患等の難治性疾患を有する患者へ移植することで、 多くの治療成功例が報告されている(Nature 422, 688-694, 2003)。
発明の開示
発明が解決しょうとする課題
[0005] ニューロスフィァ法によると、神経幹細胞を体外で増殖させることができる力 この培 養条件では、神経幹細胞の 1つの特徴として、他の細胞に比べ、細胞の増殖速度が 非常に遅いことがある。従って、実際の移植に使用する数の神経幹細胞を得るには、 増殖速度を改善する必要がある。また、移植した神経幹細胞が患者体内で神経に分 化し機能するためには、神経突起伸張が良 、ほど好ま 、。
[0006] そこで、本発明は、神経幹細胞の生存及び Z又は増殖を促進する方法、その方法 によって作製された神経幹細胞を含む医薬組成物、並びに神経幹細胞を分化誘導 する際の神経突起伸長を促進する方法を提供することを目的とする。
[0007] また、ニューロスフ ア法を用いて増殖させた神経幹細胞を、特に脳虚血、神経変 性疾患等の難治性疾患を有する患者へ移植する際、神経幹細胞が他の個体由来で あれば、移植された患者において、拒絶反応に対する対策が必要となるため、患者 本人の神経幹細胞をその場で増殖させることが好ましい。
[0008] そこで、本発明は、脊椎動物個体にぉ 、て、神経幹細胞や SVZァストロサイトの増 殖を促進するための神経幹細胞増殖促進剤及び SVZァストロサイト増殖促進剤、並 びに、神経幹細胞や SVZァストロサイトの増殖を促進するための神経幹細胞増殖促 進方法及び SVZァストロサイト増殖促進方法を提供することもまた目的とする。
課題を解決するための手段
[0009] 発明者らは、 OP9細胞株の培養上清及び-ユーロスフェアの培養上清 (以下それ ぞれ、 OP9CM、 NSF— CM)と称する)に、神経幹細胞の低密度での生存及び増殖 を維持する活性があることを見いだした。そこで、定量性質量分析計 (CIPHERGEN社 製 Protein chip)を用いて、活性のある OP9CMと活性の無い OP9CMを比較 (N=4)し 、培養上清中で発現差のある分子の分子量リストを作成した。そのリストの内最も再 現性の高力つた一つを選択し、二重マススペック (ABI社製 Q star)を用いて、断片ァ ミノ酸配列を決定したところ、ガレクチン 1であることが判明した。
[0010] ガレクチン 1は β ガラクトシドに結合するレクチンであって、細胞質内及び細胞外 の両方に存在することが知られている。ウェスタン'プロットにより OP9CM及び NSF CM中のガレクチン 1の発現を調べたところ、確かにこれらの培養上清中にガレク チン 1が検出された。そこで、ガレクチン 1のアンチセンス cDNAを強制発現するこ とによりガレクチン 1活性を阻害したところ、神経幹細胞の増殖が著しく抑制を受け た。また、糖結合に対する競合作用によりガレクチン 1の阻害活性を有する
Thiodigalactoside ( 1 OmM)を NSF— CMに添カ卩すると、神経幹細胞の低密度での生 存及び増殖を維持する活性が阻害された。
[0011] これらの結果は、 OP9CM及び NSF— CM中の上記活性力 ガレクチン 1の糖結 合活性に由来することを示唆する。このガレクチン 1を神経幹細胞で過剰発現させ る力、またはガレクチン 1を神経幹細胞を培養する培地中に添加することにより、神 経幹細胞の生存率及び Z又は増殖率を促進できることが明らかとなり、本発明の完 成に至った。
[0012] こうして完成された本発明において、培養液中の神経幹細胞の生存、増殖、または それら両方を促進する方法は、ガレクチン 1又はガレクチン 3を神経幹細胞内で過 剰発現させるステップを含むことを特徴とする。別の実施態様として、神経幹細胞を、 ガレクチン 1またはガレクチン 3を含有した培養液で培養することを特徴としてもよ い。
[0013] なお、本明細書中で、単にガレクチン 1 (又は 3)と呼んだ時は野生型ガレクチン
1 (又は 3)及び βガラクトシド結合活性を有する変異型ガレクチン 1の両方を含 むものとする。
[0014] これら実施態様において、培養液が神経幹細胞培養上清特に-ユーロスフィァ培 養上清又は ΟΡ9細胞の培養上清を含んでもよい。また、ガレクチン 1またはガレク チン- 3がこれらの培養上清に由来してもよい。
[0015] さらに、本発明に係る医薬組成物は、ガレクチン 1またはガレクチン 3を過剰発現 させた神経幹細胞を有効成分として含有し、脳内虚血によって障害が生じた高次機 能を改善することを特徴とする。また、高次機能が運動機能であっても感覚機能であ つてもよい。
[0016] さらに、本発明に係る治療方法は、ヒト以外の哺乳動物において、ガレクチン 1ま たはガレクチン 3を強制発現させた神経幹細胞を移植することによって、脳虚血に 由来する症状を改善するものである。症状としては、例えば、高次機能障害、運動機 能障害、あるいは感覚機能障害であることが考えられる。治療対象は、ヒトにも適用 可能である。
[0017] さらに、本発明に係る、 in vitroで神経幹細胞を分化誘導する際の神経突起伸長を 促進する方法は、ガレクチン 1またはガレクチン 3を前記神経幹細胞内で過剰発 現させるステップを含む。また、この方法を個体に適用してもよい。
[0018] さらに、本発明にかかる神経幹細胞増殖促進剤は、脊椎動物個体において、神経 幹細胞の増殖を促進するための神経幹細胞増殖促進剤であって、ガレクチン 1ま たはガレクチン - 3を有効成分として含有する。
[0019] また、本発明に力かる神経幹細胞増殖促進方法は、正常脊椎動物個体にお!、て 神経幹細胞の増殖を促進するための方法であって、脳にガレクチン 1またはガレク チン 3を注入することを特徴とする。この方法は、正常個体であれば、ヒトにも、ヒト以 外の脊椎動物個体に対しても適用できる。
[0020] また、本発明に力かる神経幹細胞増殖促進方法は、ヒト以外の脊椎動物個体にお V、て神経幹細胞の増殖を促進するための神経幹細胞増殖促進方法であって、脳に ガレクチン 1またはガレクチン 3を注入することを特徴としてもよい。この方法は、神 経疾患を有し、神経治療を必要とする脊椎動物個体を対象とし、特にヒト以外の脊椎 動物個体を対象とするが、ヒトにも適用可能である。
[0021] さらに、本発明に力かる SVZァストロサイト増殖促進剤は、脊椎動物個体において 、 SVZァストロサイトの増殖を促進するための SVZァストロサイト増殖促進剤であって 、ガレクチン 1またはガレクチン 3を有効成分として含有する。
[0022] また、本発明に力かる SVZァストロサイト増殖促進方法は、正常脊椎動物個体にお いて SVZァストロサイトの増殖を促進するための SVZァストロサイト増殖促進方法で あって、脳にガレクチン 1またはガレクチン 3を注入することを特徴とする。この方 法は、正常個体であれば、ヒトにも、ヒト以外の脊椎動物個体に対しても適用できる。
[0023] また、本発明に力かる SVZァストロサイト増殖促進方法は、ヒト以外の脊椎動物個 体において SVZァストロサイトの増殖を促進するための SVZァストロサイト増殖促進 方法であって、脳にガレクチン 1またはガレクチン 3を注入することを特徴としても よい。この方法は、神経疾患を有し、神経治療を必要とする脊椎動物個体を対象とし 、特にヒト以外の脊椎動物個体を対象とするが、ヒトにも適用可能である。
[0024] これまで、神経幹細胞をクローナルに培養する技術も知られて 、なかったし、クロー ナルに培養できるかどうかさえ明らかでなかったのだが、本発明者らによって、神経 幹細胞をクローナルに培養する技術が確立された。そこで、以下の検定方法及びス クリーニング方法の完成に至った。
[0025] 本発明にかかる検定方法は、培養液中に添加された対象物質に対し、神経幹細胞 の生存、増殖、またはそれら両方を促進する活性を検定する検定方法であって、神 経幹細胞を、クローナルな濃度で播種された状況下の神経幹細胞を増殖させること ができな!/、基礎培地に対象物質を添加した検定培地を用いて、クローナルな濃度で 播種する工程と、播種した神経幹細胞が、検定培地中で増殖できるかどうかを判定 する工程とを含む。この神経幹細胞が CD15 +を指標として選択された神経幹細胞 であってもよい。また、培養皿の 1ゥエルにつき 1個の神経幹細胞を入れることにより、 クローナルな濃度で播種してもよ 、。
[0026] さらに、本発明に力かるスクリーニング方法は、複数の対象物質の中から、神経幹 細胞の生存、増殖、またはそれら両方を促進する活性を有する活性物質を同定する ためのスクリーニング方法であって、上記いずれかに記載の検定方法を用いることに よって前記活性物質を同定する。
[0027] なお、上記!/、ずれのガレクチン 1も、 C—S変異型ガレクチンであってもよ!/、。 C-S 変異型ガレクチンとは、本明細書中では、ガレクチン 1の有するシスティン残基のう ち、少なくとも 1つのシスティン残基がセリン残基に変異している変異ガレクチン 1タ ンパク質をいう。
[0028] = =関連文献とのクロスリファレンス = =
なお、本願は、 2003年 9月 9日付けで出願した日本国特願 2003— 317379号に基づく 優先権を主張する。この文献を本明細書に援用する。
図面の簡単な説明
[0029] 図 1は、本発明に係る実施例 2において、神経幹細胞内でガレクチン 1を強制発 現させた時の-ユーロスフィァの形成効率を、コントロールと共に表したグラフである。
[0030] 図 2は、本発明に係る実施例 3にお 、て、神経幹細胞の培養液中にガレクチン 1 を添カ卩した時の-ユーロスフィァの形成効率を、コントロールと共に表したグラフであ る。
[0031] 図 3は、本発明に係る実施例 3において、神経幹細胞の培養液中にガレクチン 3 を添カ卩した時の-ユーロスフィァの形成効率を、ガレクチン 1を添カ卩した時の-ユー 口スフィァの形成効率と比較したグラフである。
[0032] 図 4は、本発明に係る実施例 4にお 、て、ガレクチン 1を強制発現させた神経幹細 胞(Ga卜 1+)を虚血誘導したスナネズミに移植した後、 EBSTを行った結果を、コント口 ール (G -Γ)と共に示したグラフである。
[0033] 図 5は、本発明に係る実施例 4において用いたレンチウィルスベクター
CSH- EF- MCS- IRES2- Venusの制限酵素地図である。
[0034] 図 6は、本発明に係る実施例 4にお 、て、ガレクチン 1を強制発現させた神経幹細 胞(GAL)を虚血誘導したスナネズミに移植した後、 BATを行った結果を、コントロー ル (LV)と共に示したグラフである。
[0035] 図 7は、本発明に係る実施例 5にお 、て、無処理の神経幹細胞 (A)及びガレクチン - 1を強制発現させた神経幹細胞 (B)を分化させ、抗 β III -チューブリン抗体を用い て抗体染色した写真である。矢印は伸張した神経突起を示す。
[0036] 図 8は、(A)本発明に係る実施例 6において、ガレクチン 1を注入した脳より単離し た神経幹細胞より形成された初代-ユーロスフィァの総数を示すグラフである。 (Ipsi. 注入側の脳半球力 得られたニューロスフィァ、 Ctra.その逆側の脳半球力 得られ た-ユーロスフィァ)(Ga卜 1ガレクチン一 1を注入した個体の脳、 Saline生理食塩水 を注入した個体の脳)(B)本発明に係る実施例 6において、ガレクチン 1を注入した 脳の SVZにおける細胞増殖能を調べた結果を示す写真である。(C) Bにおいて、複 数の切片上でシグナル数を数えたグラフである。
[0037] 図 9は、本発明に係る実施例 6において、ガレクチン 1注入による、 SVZを構成す る細胞の割合の変化を表したグラフである。
[0038] 図 10は、本発明に係る実施例 6において、ガレクチン 1の注入が、マウス脳内で 増殖の遅 1、細胞の増殖を促進するかどうか調べた結果を示す図である。マウスは、 ガレクチン- 1注入の最終日から 10日後 (A, B)と 30日後(C, D)に解剖し、脳を単 離した。なお、 A及び Cは本発明に係る実施例 6において、脳の SVZにおける増殖の 遅い細胞の細胞増殖能を調べた結果を示す写真であり、 B及び Dはそれぞれ、 A及 び Cにお 、て、複数の切片上でシグナル数を数えたグラフである。
発明を実施するための最良の形態
[0039] 以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳 細に説明する。実施の形態及び実施例に特に説明がない場合には、 J. Sambrook, E. F. Fntsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの 標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を 用いる。また、市販の試薬キットや測定装置を用いている場合には、特に説明が無い 場合、それらに添付のプロトコールを用いる。
[0040] なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、 当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を 再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本 発明の好ま 、実施態様を示すものであり、例示又は説明のために示されて 、るの であって、本発明をそれらに限定するものではない。本明細書で開示されている本 発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾が できることは、当業者にとって明らかである。
[0041] = =神経幹細胞におけるガレクチンの過剰発現 = =
本発明は、培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方 法であって、ガレクチン 1又はガレクチン 3を前記神経幹細胞内で過剰発現させる ステップを含むことを特徴とする。
[0042] 適用する神経幹細胞は、 Weissの-ユーロスフィァ法あるいはそれを改良した方法 を用いて単離する。神経幹細胞の由来する動物種や中枢神経系内での部位、神経 幹細胞の発生段階は特に限定しないが、以下の実施例では、マウス 14日胚前脳より 単離した神経幹細胞を用いた。
[0043] ガレクチン 1を過剰発現させる方法としては、神経幹細胞で機能する転写プロモ 一ターを有したウィルスベクターやプラスミドベクターを用いて、ガレクチン 1遺伝子 を外来的に神経幹細胞に導入し、強制発現させてもよい。導入方法は、常法に従つ て、細胞にトランスフエタトしてもよいし、ベクターにウィルスベクターを用いる場合など は、予めベクターを含んだウィルス粒子を形成させ、そのウィルスを細胞に感染させ てもよい。ウィルスとしては、ガレクチン 1遺伝子を神経幹細胞に導入し、ガレクチン 1を強制発現できるものであれば何でもよぐ例えばアデノウイルスやレトロウイルス などが使用できる。外来性遺伝子ではなぐ内在性ガレクチン 1遺伝子座に対し、 遺伝子操作を行い、過剰発現するようにしてもよい。その方法としては、例えば、相同 組換えによって、内在性ガレクチン 1遺伝子座のプロモーター領域を、恒常的に発 現する遺伝子のプロモーター領域などで置換したり、恒常的に発現する遺伝子の構 造遺伝子部分をガレクチン 1遺伝子で置換したりすること等が考えられる。
[0044] 神経幹細胞内で過剰発現させるのは、ガレクチン 1の代わりに、ガレクチン 3でも よい。
[0045] = =培養液中へのガレクチンの添力卩= =
また、別の実施形態として、ガレクチン 1またはガレクチン 3を、神経幹細胞を培 養する培地中に添加してもよい。この場合、添加するガレクチン 1またはガレクチン —3の濃度は、最終濃度 lOOpgZml以上になるようにするのが好ましぐ lOOng/ml 以上になるようにするのがより好まし!/、。
[0046] 精製したガレクチン 1を添加する代わりに、ガレクチン 1を含有した培地を添加し てもよい。例えば、 OP9細胞株や神経幹細胞の培養上清や、ガレクチン 1を適当な 細胞株 (例えば COS細胞株や 293T細胞株など)で強制発現させ、その培養上清を 用いてもよい。
[0047] = =マウス個体内へのガレクチンの投与 = =
本発明に従って、ガレクチン 1またはガレクチン 3を、直接脊椎動物個体の脳に 注入することにより、本来個体が有する神経幹細胞及び Z又は SVZァストロサイトを 増殖させることができる。
[0048] 注入部位は脳内であればどこでもよ!/、が、神経幹細胞の近傍、例えば側脳室など が好ましい。注入するガレクチン量は 5— 100 gZ個体が好ましぐ 10— 20 /z gZ 個体がより好ましい。ガレクチンの形態は、特に限定されないが、精製したガレクチン を培地や生理食塩水や PBS等に溶解した溶液状であることが好ましい。その際、溶 液は、 13 メルカプトエタノールを 1一 lOmM及び EDTAを 1一 5mM添カ卩するのが 好ましい。あるいは、 OP9細胞株や神経幹細胞の培養上清や、ガレクチン 1を上記 のような適当な細胞株で強制発現させ、その培養上清を用いてもよい。
[0049] 対象とする脊椎動物は、ヒトでもヒト以外でも良い。健康な正常個体に行ってもよぐ 神経疾患を有し、神経治療を必要とする個体に行ってもよい。正常個体にガレクチン を投与することにより、神経機能の向上、ひいては生活の質 (QOL)の向上が期待さ れる。また、特に脳虚血、神経変性疾患等の難治性疾患を有する患者にガレクチン を投与することにより、神経細胞の再生を促進し、運動機能、感覚機能、認知機能の 低下などの神経症状を緩和させたり回復させたりすることが期待できる。
[0050] = =マウス個体内へのガレクチン及び神経幹細胞の同時投与 = =
上記のようにして得られた、ガレクチン 1又はガレクチン 3を過剰発現させた神経 幹細胞を、脳内虚血による症状、特に障害が生じた高次機能を改善するための治療 薬として用いることができる。脳内虚血によって障害の生じる高次機能として、運動機 能'感覚機能'認識機能が知られているが、以下の実施例では、運動機能及び感覚 機能を例にとって、機能改善を測定した。
[0051] 神経幹細胞を移植する際には、ノ ッファーやキャリアなどとともに形成した医薬組成 物を移植するのが好ましい。以下の実施例で示すように、通常の神経幹細胞を移植 するのに比べ、ガレクチン 1又はガレクチン 3を過剰発現させた神経幹細胞を移植 した場合、症状の改善の効果が、より著しいことがわかる。
[0052] 神経幹細胞の移植の際、ガレクチン 1又はガレクチン 3を脳内に投与する別の 方法として、ガレクチン 1又はガレクチン 3を過剰発現させた神経幹細胞を移植す るのではなぐ神経幹細胞の移植とともに、ガレクチン 1又はガレクチン 3を脳内に 直接投与するか、または静注により血中投与しても良い。
[0053] 野生型ガレクチン 1は、還元剤(例えば β メルカプトエタノール)非存在下で 24 時間以内に j8—ガラクトシド結合活性を失うが、 C S変異型ガレクチン 1 (例えば、 C 2S、 C16S、 C42S、 C60S、 C88S、 C130Sの各変異ガレクチン—: 0は 1週間以上 その活性を保つことから、システィン残基が還元状態にあることが糖結合活性を安定 に保つのに重要であることが示された(Hirabayashi and Kasai, J Biol Chem 268, 23648-23653) oこのように、 C—S変異型ガレクチンは、野生型ガレクチンと同じ j8—ガ ラタトシド結合活性を有するば力りでなぐ非還元状態において、野生型ガレクチンよ り、長期にわたって安定に活性を保つことができる。従って、本発明のいずれにおい ても、上記野生型ガレクチンの代わりに C-S変異型ガレクチンを用いてもよい。 C-S 変異型ガレクチン 1の場合、中でも C2S型変異体は非還元状態で最も安定であり ( Hirabayashi and Kasai, J Biol Chem 268, 23648- 23653)、特に好ましい変異体である 。また、 C S変異型ガレクチンは、複数のシスティン残基がセリン残基と置換していて もよい。なお、これらの変異型タンパク質は、常法により、ガレクチン遺伝子に対して in vitro mutagenesisの方法を用いて得られた変異遺伝子を大腸菌で発現させ、精製 することにより得られうる(Hirabayashi and Kasai, J Biol Chem 268, 23648-23653)。
[0054] = =神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する活性物質 を同定するためのスクリーニング = =
本発明の検定方法によると、培養液中に添加された検定対象物質が、神経幹細胞 の生存、増殖、またはそれら両方を促進する活性を有するかどうか検定することがで きる。
[0055] まず、神経幹細胞を、クローナルな濃度で播種したときは、神経幹細胞が増殖する ことができな ヽ基礎培地を選択する。この基礎培地に検定対象物質を添加して検定 培地を作製し、神経幹細胞をクローナルな濃度で播種する。適当な期間培養した後 、播種した神経幹細胞が、検定培地中で増殖できるかどうか、すなわちコロニーを形 成するかどうかを判定することにより、検定対象物質が、神経幹細胞の生存、増殖、 またはそれら両方を促進する活性を有するかどうか判断する。
[0056] 用いる神経幹細胞は、 Weissらの報告した-ユーロスフィァ法などの常法に従って単 離し、増殖させたものでもよいが、細胞膜抗原である CD 15の発現を指標にして単離 した細胞を用いることが好ましい。例えば、脳から単離した細胞あるいは-ユーロスフ ィァ法によって増殖させた細胞を用い、 FACS、ァフィ-ティカラム、マグネットビーズ 法などにより、 CD15を発現している細胞を濃縮することができる。 CD15は多分ィ匕能 を有する神経幹細胞に強く発現しているので、この方法により、検定にかける細胞中 での神経幹細胞の割合を数倍一 10倍程度濃縮することができ、安定した検定結果 を得られるようになる。
[0057] クローナルな濃度で播種するのには、例えば、直径 10cmのプラスティックシャーレ に、 10個一 1000個程度の細胞を播種するというように、一つの培養皿に低密度で 神経幹細胞を播種してもよ 、が、例えば 96ゥエルのプラスティックシャーレの各ゥェ ルに細胞一つずつ播種するというように、一つのゥエルに一つの細胞を播種するの が好ましい。
[0058] 基礎培地は、例えば、実施例の表 1に記載の培養液などを用いることができるが、 どのような物質を単離するかにより、基礎培地を選ぶことができる。例えば、高密度の 神経幹細胞を増殖させることはできる力 低密度では増殖させることができないような 培地を選択すると、低密度で増殖できない原因は、神経幹細胞自体が分泌している 因子の不足によるものと考えられるので、神経幹細胞が分泌している様々な分泌因 子を検定するのに好ましいであろう。
[0059] 検定対象物質は、このように、神経幹細胞などの培養液中から単離したものであつ ても、市販の化合物ライブラリーから購入できるものであってもよぐ本検定方法によ つて基本的にどんな物質でも検定できるが、神経幹細胞の培養に毒性がない物質が 好ましい。
[0060] こうして選択された基礎培地に、検定対象物質を添加して、検定培地を作製する。
検定培地中の神経幹細胞の培養は常法に従って行うことができる。数日一 1ヶ月程 度培養した後、検定対象物質が神経幹細胞の生存、増殖、またはそれら両方を促進 する活性を有すれば、検定培地中にコロニーが観察される。
[0061] この検定方法を用いることにより、化合物ライブラリーや培養液力 単離された物質 などのような一群の物質の中から、神経幹細胞の生存、増殖、またはそれら両方を促 進する活性を有する物質をスクリーニングし、単離することが可能である。
実施例
[0062] 以下、実施例を用いて、以上に説明した実施態様を具体的に説明するが、これは、 実施の一例であって、本発明をこの実施例に限定するものではない。
[0063] <実施例 1 :ニューロスフィァの作成 >
妊娠 14日目マウス子宮より、マウス 14日胚を剖出し、側脳室周囲部を単離し、ピぺ ットを用 、て単一細胞に物理的に解離した。表 1の培養液に 5x105/mlの密度で播種 し、一週間 37°C5%で培養すると、約 50-200 m程度の球状の浮遊性細胞塊が得られ た。
[表 1] /し 製造者および型式
D EM/F12 1 :1 1.56g GIBCO 12400-016
NaHC03 1.2g (14mM) Nacalai
Glucose 2.9g Nacalai
Trsnsferrin 100mg 和光 208- 10333
Insulin 25mg SIGMA 1-5500
Progesterone 6.3 jU g SIGMA P - 0130
Sodium Selenate 5.2 ju g SIGMA S-1382
Putrescine 9.7mg SIGMA P-7505
EGF 40 i g Genzyme Tech
bFGF 40 i Genzyme Tech
[0064] この細胞塊を、再び単一細胞に物理的に解離し、セルソーターを用いて、新たに調 製した培地中に 1一 100細胞 Zゥエルの細胞密度でソーティングを行った。その際、 実験誤差を少なくするため、厳密にソーティングする細胞の大きさを 10— 25 mとし、 かつ死細胞を PI染色法により染色し除去した。その後、さらに 7日間培養し、形成され る-ユーロスフィァ (50 m以上の細胞塊として定義)の数を測定し、形成効率とした。 このアツセィ系における-ユーロスフィァの形成効率を、神経幹細胞の生存及び Z又 は増殖の指標とした。
[0065] この方法に従ってソーティングした後、表 1の培養液のみでは-ユーロスフィァは形 成されなかった。しかしながら、培養液中に-ユーロスフィァ培養上清または OP9C Mを添加することにより、ソーティング後の-ユーロスフィァの形成が可能となった。
[0066] OP9CMは以下のようにして調製できる。通常 20%FCSを含む α MEMで継代さ れている OP9細胞に対し、 PBSで数回洗い、表 1の培地を添カ卩して、 48時間 37°C5 %C02の条件下で培養する。その後、 0.45 mのフィルターで細胞成分を除去し、 培養上清 OP9CMとする。
[0067] <実施例 2 :ガレクチン 1の強制発現 >
レトロウイルス発現ベクター pMY- IRES- EGFPに、マウス ·ガレクチン— lcDNA全長 配列をクロー-ングした(GAL)。以下、ネガティブコントロールとして、ベクターのみ のもの(RV)、及びガレクチン lcDNAを逆向きに挿入したもの(AS)を用いた。こ れらのレトロウイルスベクターと VSV-G発現プラスミドを、それぞれレトロウイルス産生 細胞株 293gpにトランスフエタトした。その後 48時間培養し、各上清をレトロウイルス含 有培地として回収した。実施例 1に従って-ユーロスフィァを培養する際、培養液中 にレトロウイルス含有培地を添カ卩し、感染の成立した-ユーロスフィァ細胞のみを、セ ルソーターを用いてソーティングした。なお、ソーティングの際には、希釈なしの-ュ 一口スフィァ培養上清を用いた。この培養上清は、ニューロスフェア形成時の培養条 件にて 72時間培養の後に、 0.45 mフィルターを通して細胞成分を除去することによ り調製した。
[0068] その後 7日目に形成された-ユーロスフィァの形成効率 (ニューロスフィァの数 Zソ ートされた神経幹細胞の数)を、 GAL、 RV、 ASの間で比較した。図 1に示すように、 RV (コントロール) 5. 58%、 GAL (ガレクチン 1強制発現群) 7. 78% (有意水準 p =0. 002)、 AS (ガレクチン 1アンチセンス強制発現群) 3. 9% (有意水準 p = 0. 0 05)となり、ガレクチン 1の強制発現は、神経幹細胞の生存及び Z又は増殖を促進 した。
[0069] <実施例 3 :培地中へのガレクチンー1またはガレクチンー3の添カロ >
実施例 1のソーティング後の培地中にヒト組換えガレクチン l(Genzyme technology 社)を 100pg/ml、 Ing/mU 100ng/mlにて添カ卩した。結果を図 2に示す。なお、本実験 では、ソーティング後の培養培地としては、約 66%に希釈した-ユーロスフィァ培養上 清を用いた。
[0070] 結果として、独立試行を 3回行い、図 2に示すように、ネガティブコントロール 0. 13 %、ガレクチン 1 100pg/ml添カ卩時 0. 23%、ガレクチン 1 lng/ml添加時 0. 23% 、ガレクチン 1 100ng/ml添カ卩時 1. 9%となり、ガレクチン 1 100pg/ml又は lng/ml 添加により、ニューロスフィァの形成効率は上昇した力 lOOng/ml添カ卩により、最も著 しくニューロスフィァの形成効率は上昇し、ガレクチン 1は、濃度依存的に神経幹細 胞の生存及び Z又は増殖を促進した。
[0071] さらに、ガレクチン 1との代わりにガレクチン 3を用いて、 100ng/mlにて実験を行 つた (N= 5)。本実験では、培養の基礎培地として、希釈なしの-ユーロスフィァ培養 上清を用いた。図 3に示すように、ガレクチン 1添カ卩時 3. 75%、ガレクチン 3添カロ 時 3. 52%となり、ガレクチン 3もガレクチン 1と同等の効果があった。
[0072] <実施例 4 :モデル動物を用いた実験 > = =スナネズミの虚血誘導 = =
16— 21週齢で体重 60— 76gのスナネズミ(Meriones unguiculatus)を 3匹または 4 匹のグループに分け、 12時間の明暗サイクルで飼育した。スナネズミを二群に分け、 2%イソフルレンを用いて麻酔し、左側の頸動脈を小ピンチコックで 10分間狭窄し、 虚血を誘導した。
[0073] 脳梗塞の症状は梗塞指標(stroke index: SI)で評価した。即ち、以下の行動ある!/、 は状態に対し、それぞれ下記の点数を与え、当てはまる症状の点数を合計する。 毛の逆立てまたは振戦 1
感覚の鈍化 1
動作の減少 1
反り返った頭部 3
閉じない目 3
眼瞼下睡 1
外向きに広げた脚 3
回旋運動 3
発作 3
高度の筋力低下 6
[0074] 虚血誘導した個体群のうち、 10以上の点数を有した個体を選択し、一度目の虚血 誘導の 5時間後に、もう一度同様の虚血誘導の操作を行い、以下の移植実験に用い た。
[0075] = =神経幹細胞の移植 = =
スナネズミに虚血誘導操作を行った 4日後に、以下のように移植手術を行った。ス ナネズミを 2%イソフルレンを用いて麻酔し、定位フレーム内に置く。虚血を誘導した のと同じ左側の頭蓋骨に、頭蓋骨を平面にしたときのブレダマからの座標(前方約 1. Omm、側方約 1. 5mm、腹方約 1. 5mm)にある線条体の尾状核に 10 1のノヽミルトン シリンジが挿入できる程度の穴を開ける。ハミルトンシリンジを用いて、 2分以上かけ て移植用懸濁液(5xl05細胞数 /3 1)を 3 1注入し、 2分放置して、拡散させること により、尾状核に神経幹細胞を移植した。実験に供する二群に対して、実施例 2で作 製した、ウィルスベクター (RV)のみを有する神経幹細胞、及びガレクチン 1 (GAL) を有する神経幹細胞を、それぞれ移植した。なお、各神経幹細胞に対し、移植前に 遺伝子導入を計 2回行い、合計 21日間培養した。拒絶反応を抑制するため、各個体 群に対し、手術後 4週間、週に 3回ミグリオール 812 (ミツバ貿易)を混合したシクロス ポリン A (和光製薬)を投与した。手術後は、摂餌、グルーミング、体重の増加が正常 に回復するまでケージに一匹ずつ飼育した。
[0076] = = EB¾T (elevated body swing test) = =
実験に用いたスナネズミの運動機能を評価するために、 EBSTを行った。各スナネ ズミ個体を、尾の付け根で保持し、実験台から約 10センチの高さに持ち上げた。左 右どちらかの側に 10度以上上半身を持ち上げたとき、その側へのスイングと定義す る。一分間のスイングの方向と回数を測定し、これを毎日 3回 (合計 3分)繰り返した。 ここでは、左側の脳に虚血誘導を起こさせているので、その反対側、即ち右側にスィ ングする割合が計測された。
[0077] 虚血誘導操作をした日、神経系前駆細胞を移植した日、及び、移植後 10日目、 20 日目、 30日目に、 EBSTを行った。図 4に示したように、ガレクチン— 1 (GAL)を有す る神経幹細胞を用いると、ウィルスベクター (RV)のみを有する神経幹細胞に比べ、 さらに運動機能障害の回復が観察された。
[0078] = = BAT (bilateral asymmetry test) = =
次に、実験に用いたスナネズミの体性感覚機能を評価するために、 BATを行った。 ここでは、実施例 2とは異なり、レンチウィルスのベクターを用いた。まず、ヒト 'ニュー ロスフェアから TotalmRNAを TRIzoKinvitrogen社)にて単離し、
Superscript2(Invitrogen)及び下記のプライマーを用いて、 RT— PCRを行った。 PCR の条件としては、酵素は KOD+(TOYOBO社)を用い、 94°C2分で変性処理をした後、 94°C 15秒— 60。C30秒— 68。C60秒を 30サイクル行った。
プライマー 1 : GCGGCCGCGCCACCATGGCTTGTGGTCTGGTCGC (配列番号: 0 プライマー 2: AGAGTGGATCCTTATCAGTCAAAGGCCACACATTTG (配列番号 2 )
[0079] 増幅した DNA断片を Notlと BamHlで消化し、 CSH- EF- MCS- IRES2- Venus (図 5) の Notl— BamHl部位にクローユングした。このようにしてできたガレクチン— 1の発現 ベクターを用い、文献記載の方法(Miyoshi et al., J. Virol, vol.72, 8150-8157, 1998 )により、ガレクチン 1を発現するレンチウィルスを得た。簡単に記載すると、上記べ クタ一、 pMDLg/pRRE、 pVSV- G、 pRSV- REVの合計 4つのウィルス構成要素発現プ ラスミドを 293T細胞にトランスフエタトし、一定期間細胞にウィルスを産生させ、培養上 清中のウィルスを超遠心で精製して、ニューロスフェアを培養している培地に添加す ることにより、神経幹細胞に感染させた。
[0080] ガレクチン 1発現神経幹細胞を上記の様に移植したスナネズミ各個体の両前肢の 足部分に約 60mm2の粘着テープを貼り、虚血誘導を起こさせた側の反対側、即ち 右側の足のテープを除去するまでの時間を記録する。この試みを一日に 3回行い、 その平均時間を各個体のスコアとした。テストを行った個体群及び日は、 EBSTと同 様である。
[0081] 図 6に示すように、ガレクチン 1 (GAL)を発現する神経幹細胞を用いると、 30日 後に、ウィルスベクター (LV)のみを有する神経幹細胞に比べ、テープを除去するま での時間が短くなり、感覚神経障害の回復が観察された。
[0082] <実施例 5:中枢神経突起伸長効果 >
実施例 2で作製した、マウス'ガレクチン lcDNAを組み込んだレトロウイルスべク ター pMY-IRES-EGFを有する神経幹細胞を、培養培地から増殖因子 EGF及び FGF を除去して接着培養を行うことにより、ニューロンを分化させた。分化した細胞を、ニュ 一ロンの特異的マーカーである /3 III チューブリンで染色したところ、図 7に示すよう に、ガレクチン 1を発現する神経幹細胞が分化した神経細胞は、コントロールである 無処理の神経幹細胞が分化した神経細胞に比べ、顕著に伸張した神経突起を有す ることがわかった。
[0083] <実施例 6:マウス個体におけるガレクチン 1注入の効果 >
= =ガレクチン 1注入による-ユーロスフィァ形成能の増加 = =
マウス'ガレクチン 1を 0. 9%生理食塩水に溶解し、全量 14 gのマウス'ガレクチ ンー 1を含む溶液、及び含まない溶液を、マウス(10— 15週令)の片側の側脳室( Ipsi.)に 7日間、浸透圧ポンプを用いて時速 0. 5 1の速度で注入し、逆側の側脳室( Ctra.)には何も注入しなかった。このように、ガレクチン 1注入側(Ipsi. Ga卜 1)、ガレ クチン 1注入逆側(Ctra. Ga卜 1)、生理食塩水注入側(Ipsi. saline)、生理食塩水逆 側(Ctra. saline)の 4つの場所にっ 、ての実験結果を比較した。
[0084] 脳先端力 左右の脳室の交差点まで、皮質や海馬の混入がないようにして両側の 側脳室周辺の組織を単離し、それぞれ単一細胞に解離した。解離した細胞を、 20η gZmlの EGFを含む上記培地を用い、 1000— 2000細胞 Zmlの濃度で、 6ゥエルの プレートに播種した。 10— 12日培養後、形成された初代-ユーロスフィァの総数を数 えた。結果を図 8Aに示す。
[0085] ガレクチン 1 (Ipsi., Gal-1)を注入した場合、生理食塩水(Ipsi., Saline)を注入した 時より、脳半球当たり得られる-ユーロスフィァの数は、有意に増加し、この増加は、 注入して 、な 、側(Ctra.)の脳半球でも観察された (Gal-1 vs Saline)。
[0086] また、ガレクチン 1を注入したマウスから得られた-ユーロスフィァのうち 99%以上 力 二次-ユーロスフィァ形成や-ユーロンとグリアへの多分ィ匕能を示した。
この結果は、ガレクチン 1の注入によって神経幹細胞数が増加して 、ることを示唆 し、従って、マウス個体内でも、ガレクチン 1が神経幹細胞数の生存、増殖、または それら両方を促進する効果を有すると考えられる。
[0087] = =ガレクチン 1注入による SVZにおける細胞増殖能の促進 = =
本実施例では、マウスの脳にガレクチン 1を注入した時、 SVZ(subventricular zone)における細胞増殖能が促進されるかどうか調べた。 SVZは、成体脳においても 、神経細胞の増殖が継続して ヽることが知られて ヽる領域である。
[0088] 7日間マウス(8週令)の脳にガレクチン 1を注入した後、 2時間おきに 10時間にわ たって、 0.007%NaOHを含有するリン酸緩衝液に溶解した溶液 BrdU (シグマ社)を、最 終量 120mg/kg体重になるように、腹腔に注入した。最終投与後 30分して、マウスを 4 %ホルムアルデヒド溶液で灌流固定し、脳を単離し、 4%ホルムアルデヒド溶液に浸し てさらにー晚、後固定した。ヴイブラトーム (vibratome)で 50 /z mの切片を作製し、 PB Sで 3度リンスした後、 TNBブロッキング溶液(TNB blocking solution; Vector社)で 1 時間インキュベートした。抗 BrdU抗体(ラットモノクローナル、 Abeam社、 1: 100)で一 晚 4°Cでインキュベートした後、ピオチン化二次抗体 (抗ラッ HgG、 1 : 200)で 1時間 室温でインキュベートした。 PBSでリンスし、 ABC Elite kit (Vector社)で発色させた。 その結果を、生理食塩水を注入した個体における結果とともに図 8Bに示す。また、 複数の SVZの切片上で抗 BrdU抗体によって核が染色された細胞数を数えた結果を 図 8Cに示す。
[0089] ガレクチン 1を注入した場合、生理食塩水の注入に比べて核が染色された細胞が 平均 36%増加していた。また、これらのサンプル間で、アポトーシスを起こしている細 胞数に、有意な差はなかった(図示せず)。この結果より、マウス個体内では、ガレク チン - 1が神経幹細胞の増殖を促進する効果を有すると考えられる。
[0090] = =ガレクチン 1注入による SVZを構成する細胞数の増加 = =
このように、ガレクチン 1の注入は、 SVZにおける細胞増殖を促進した力 それに よって、 SVZを構成する細胞数の増加が生じるかどうかを調べた。
[0091] SVZにおいては、 SVZァストロサイトの一部は幹細胞として機能し、中間分化段階 の TA細胞(transit amplifying cells)を経て、さらに細胞増殖の後、 NB (神経芽細胞) へと分ィ匕することが知られている。そこで、細胞タイプを識別するため、上記のように ガレクチン 1及び BrdUを注入したマウスの切片に対し、各種細胞マーカーを用いて SVZを構成する細胞を染色した。
[0092] ここでは、 BrdUで増殖細胞を染色すると共に、ゥサギ抗 Dlx抗体(Grace
Panagan¾an氏から供与、 1 :400で使用)、マウス抗 Mashlモノクローナル抗体( Phaemingen社、 1: 100で使用)、ゥサギ抗 Sox21抗体 (発明者らが作製、 1 : 10で使用 ) (Ohba et al, Neurosci Lett. 358(3):157- 60, 2004)を用いて、組織化学的染色を行 つた。抗 Dlx抗体は TA細胞と NBに特異的に認識する。また、抗 Mashl抗体は、 Dlx+ 細胞の一部の細胞集団を認識する力 この細胞集団は、ほとんどの細胞が BrdUポジ ティブで、 GFAPや PSA-NCAMネガティブであることから、抗 Mashl抗体は TA細胞の 全部または一部を特異的に認識することになる。抗 Sox21抗体は、 SVZの全ての細 胞種を認識する。組織化学的染色は、上記抗 BrdU抗体の場合と同じ手法で行った。 結果を図 9及び表 2に示す。
[表 2] ガレクチン- 1は成体 SVZにおいて NSPGを増加させる
SVZァストロサイト TA細胞 ニューロブラスト
Sox21 + + +
マーカー Dlx + +
Mashl +
ガレクチン- 1 65.0+13.0* 236+18.7* 125+37.2 細胞数
生理食塩水 32.6±4.15 171 + 1 1.1 109+9.20 相対比 力'レクチン- 1 /生理食塩水 1.99 138 1.14
[0093] 図 9は、各実験条件にお!、て、検出された細胞タイプの割合を示したグラフである( A;NB細胞 Dk+/ Mashl—、 B ; SVZァストロサイト BrdU+/Sox21+/Dlx-、 c ;TA細胞
Mashl+、 O ;その他の細胞)。ガレクチン 1の注入によって、増殖している SVZァス トロサイト (B、グラフでは *部)の割合が有意に (pく 0.05)増加したことがわかる。また、 ガレクチン 1の注入によって、 SVZにおける、増殖している SVZァストロサイト(B)の 割合が、ガレクチン 1を注入したのと左右逆の脳半球の側でも有意に (pく 0.05)増加 していた。また、表 1より、 SVZァストロサイト(B)だけでなく TA細胞 (C)の細胞数も、 有意に増加して 、ることがわかる
これらの結果から、ガレクチン— 1の注入は、マウス個体内で SVZァストロサイトの増 殖を促進することが明らかになった。 SVZァストロサイトの一部は神経幹細胞として機 能するため、この結果は、ガレクチン 1の注入が、マウス個体内で神経幹細胞の増 殖を促進することを支持する。
[0094] = =ガレクチン 1投与による増殖の遅い細胞数の増加 = =
神経幹細胞は、 in vivoで増殖が遅い一群の細胞に含まれていることが知られてい る。そこで、ガレクチン 1の注入が、マウス個体内で増殖の遅い細胞の増殖を促進 するかどうか調べた。
[0095] ここでは、 BrdUを脳内に注入するのではなぐ lmg/mlの BrdUを飲み水に添カロし、 1週間、マウスに与えた。マウスは、ガレクチン 1注入の最終日力ら 10日後と 30日後 に解剖し、脳を単離した。 BrdUの検出は、上記と同様に行った。結果を図 10に示す [0096] ガレクチン 1を注入した脳では、生理食塩水を注入した脳より、有意に(10日目 p=0.01、 30日目 p〈0.001) BrdUポジティブな細胞数が増加していた。し力し、 BrdUポ ジティブな細胞中、 TA細胞の一部を認識する Mashlの発現して ヽる細胞の割合は、 コントロールと有意な差はな力つた(図示せず)。これらの結果より、ガレクチン 1の 注入は、マウス個体内で、 TA細胞に分化する前の増殖の遅い細胞の増殖を促進す ることが明らかになった。この結論は、ガレクチン 1の注入が、マウス個体内で神経 幹細胞の増殖を促進することを支持する。
産業上の利用可能性
[0097] 本発明によれば、神経幹細胞の生存及び Z又は増殖を促進する方法、及びその 方法によって作製された神経幹細胞を含む医薬組成物を提供することができる。 ま た、脊椎動物個体において、神経幹細胞や SVZァストロサイトの増殖を促進するた めの神経幹細胞増殖促進剤及び SVZァストロサイト増殖促進剤、並びに、神経幹細 胞ゃ SVZァストロサイトの増殖を促進するための神経幹細胞増殖促進方法及び SV Zァスト口サイト増殖促進方法を提供することができる。
[0098] さらに、神経幹細胞の生存、増殖、またはそれら両方を促進する活性を検定する検 定方法、及び神経幹細胞の生存、増殖、またはそれら両方を促進する活性を有する 物質のスクリーニング方法を提供することができる。

Claims

請求の範囲
[1] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって ガレクチン 1 (Galectin-1)を前記神経幹細胞内で過剰発現させるステップを含む ことを特徴とする方法。
[2] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって ガレクチン 3 (Galectin-3)を前記神経幹細胞内で過剰発現させるステップを含む ことを特徴とする方法。
[3] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって 前記神経幹細胞を、ガレクチン 1を含有した培養液で培養することを特徴とする方 法。
[4] 培養液中の神経幹細胞の生存、増殖、またはそれら両方を促進する方法であって 前記神経幹細胞を、ガレクチン 3を含有した培養液で培養することを特徴とする方 法。
[5] 前記培養液が神経幹細胞培養上清を含有することを特徴とする請求項 1または 3に 記載の方法。
[6] 前記培養液がニューロスフィァ培養上清を含有することを特徴とする請求項 1また は 3に記載の方法。
[7] 前記培養液が、 OP9細胞株の培養上清を含有することを特徴とする請求項 1また は 3に記載の方法。
[8] ガレクチン - 1を過剰発現させた神経幹細胞を有効成分として含有し、脳内虚血に よって障害が生じた高次機能を改善することを特徴とする医薬組成物。
[9] ガレクチン - 3を過剰発現させた神経幹細胞を有効成分として含有し、脳内虚血に よって障害が生じた高次機能を改善することを特徴とする医薬組成物。
[10] 前記高次機能が運動機能であることを特徴とする請求項 8または 9に記載の医薬組 成物。
[11] 前記高次機能が感覚機能であることを特徴とする請求項 8に記載の医薬組成物。
[12] ヒト以外の哺乳動物において、ガレクチン - 1を過剰発現させた神経幹細胞を移植 することによって、脳虚血に由来する症状を改善する脳虚血治療方法。
[13] ヒト以外の哺乳動物において、ガレクチン 3を過剰発現させた神経幹細胞を移植 することによって、脳虚血に由来する症状を改善する脳虚血治療方法。
[14] 神経幹細胞が分化する際の神経突起伸長を促進する促進剤であって、
ガレクチン 1またはガレクチン 3を有効成分として含有することを特徴とする促進剤
[15] 神経幹細胞が分化する際の神経突起伸長を促進する方法であって、
ガレクチン 1を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とす る方法。
[16] 神経幹細胞が分化する際の神経突起伸長を促進する方法であって、
ガレクチン 3を前記神経幹細胞内で過剰発現させるステップを含むことを特徴とす る方法。
[17] 脊椎動物個体において、神経幹細胞の増殖を促進するための促進剤であって、 ガレクチン 1またはガレクチン 3を有効成分として含有することを特徴とする促進 剤。
[18] 正常脊椎動物個体にぉ 、て神経幹細胞の増殖を促進するための方法であって、 脳にガレクチン 1またはガレクチン 3を注入することを特徴とする方法。
[19] ヒト以外の脊椎動物個体にぉ 、て神経幹細胞の増殖を促進するための方法であつ て、
脳にガレクチン 1またはガレクチン 3を注入することを特徴とする方法。
[20] 脊椎動物個体において、 SVZァストロサイトの増殖を促進するための促進剤であつ て、
ガレクチン 1またはガレクチン 3を有効成分として含有することを特徴とする促進 剤。
[21] 正常脊椎動物個体において SVZァストロサイトの増殖を促進するための方法であ つて、
脳にガレクチン 1またはガレクチン 3を注入することを特徴とする方法。
[22] ヒト以外の脊椎動物個体にぉ 、て SVZァストロサイトの増殖を促進するための方法 であって、
脳にガレクチン 1またはガレクチン 3を注入することを特徴とする方法。
[23] 培養液中に添加された対象物質に対し、神経幹細胞の生存、増殖、またはそれら 両方を促進する活性を検定する検定方法であって、
神経幹細胞を、クローナルな濃度で播種された状況下の神経幹細胞を増殖させる ことができない基礎培地に前記対象物質を添加した検定培地を用いて、クローナル な濃度で播種する工程と、
前記播種した神経幹細胞が、前記検定培地中で増殖できるかどうかを判定するェ 程と、
を含む検定方法。
[24] 培養液中に添加された対象物質に対し、神経幹細胞の生存、増殖、またはそれら 両方を促進する活性を検定する検定方法であって、
CD15 +の神経幹細胞を選択する工程と、
前記選択された CD15 +の神経幹細胞を、クローナルな濃度で播種された状況下 の神経幹細胞を増殖させることができない基礎培地に前記対象物質を添加した検定 培地を用いて、クローナルな濃度で播種する工程と、
前記播種した CD15 +の神経幹細胞力 前記検定培地中で増殖できるかどうかを 判定する工程と、
を含む検定方法。
[25] 培養皿の 1ゥエルにつき 1個の神経幹細胞を入れることにより、前記クローナルな濃 度で播種することを特徴とする請求項 23又は 24に記載の検定方法。
[26] 複数の対象物質の中から、神経幹細胞の生存、増殖、またはそれら両方を促進す る活性を有する活性物質を同定するためのスクリーニング方法であって、
請求項 23— 25のいずれかに記載の検定方法を用いることによって前記活性物質 を同定することを特徴とするスクリーニング方法。
[27] 前記ガレクチン 1が、 C S変異型ガレクチンであることを特徴とする請求項 1、 3, 5 一 7, 15, 18, 19, 21, 22の!ヽずれ力に記載の方法。
[28] 前記ガレクチン 1が、 C S変異型ガレクチンであることを特徴とする請求項 8また は 11に記載の医薬組成物。
[29] 前記ガレクチン 1が、 C S変異型ガレクチンであることを特徴とする請求項 12に記 載の脳虚血治療剤。
[30] 前記ガレクチン 1が、 C S変異型ガレクチンであることを特徴とする請求項 14, 1 7, 20のいずれかに記載の促進剤。
PCT/JP2004/013043 2003-09-09 2004-09-08 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法 WO2005026343A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/571,277 US7785596B2 (en) 2003-09-09 2004-09-08 Methods for enhancing survival and/or proliferation of neural stem cells and neurite extension enhancers therefor pharmaceutical compositions containing neural stem cells assay methods and screening methods
AT04787726T ATE505539T1 (de) 2003-09-09 2004-09-08 Verfahren zur förderung des überlebens und/oder der proliferation einer neuralen stammzelle und zur förderung der neuritenverlängerung, promotor dafür, die neurale stammzelle enthaltende pharmazeutische zusammensetzung, testverfahren und screening-verfahren
JP2005513873A JP5099288B2 (ja) 2003-09-09 2004-09-08 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法
DE602004032248T DE602004032248D1 (de) 2003-09-09 2004-09-08 Verfahren zur förderung des überlebens und/oder der proliferation einer neuralen stammzelle und zur förderung der neuritenverlängerung, promotor dafür, die neurale stammzelle enthaltende pharmazeutische zusammensetzung, testverfahren und screening-verfahren
EP04787726A EP1674566B1 (en) 2003-09-09 2004-09-08 Method of promoting subsistence and/or proliferation of neural stem cell and promoting extension of neurite, promoter therefor, pharmaceutical composition containing neural stem cell, method of assay and method of screening

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-317379 2003-09-09
JP2003317379 2003-09-09

Publications (1)

Publication Number Publication Date
WO2005026343A1 true WO2005026343A1 (ja) 2005-03-24

Family

ID=34308479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013043 WO2005026343A1 (ja) 2003-09-09 2004-09-08 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法

Country Status (6)

Country Link
US (1) US7785596B2 (ja)
EP (1) EP1674566B1 (ja)
JP (2) JP5099288B2 (ja)
AT (1) ATE505539T1 (ja)
DE (1) DE602004032248D1 (ja)
WO (1) WO2005026343A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210968A (ja) * 2006-02-10 2007-08-23 Keio Gijuku 神経幹細胞の増殖抑制剤
WO2007114473A1 (ja) * 2006-04-05 2007-10-11 Keio University シグナル伝達系活性化剤
JP2012029684A (ja) * 2010-06-30 2012-02-16 Cell Aid Kenkyusho:Kk 細胞の製造方法
JP2014240388A (ja) * 2008-11-14 2014-12-25 メディポスト カンパニー リミテッド 間葉幹細胞またはその培養液を含む神経疾患の予防または治療用の組成物
US9439931B2 (en) 2006-11-30 2016-09-13 Medipost Co., Ltd Administering umbilical cord blood-derived mesenchymal stem cells to treat nerve injury

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330602A1 (en) * 2006-09-19 2010-12-30 Emory University Use of Soluble Galectin-3 (Gal-3) for Cancer Treatment
AU2008206884B2 (en) * 2007-01-18 2012-07-05 Glykos Finland Oy Novel methods and reagents directed to production of cells
US20100120142A1 (en) 2008-07-11 2010-05-13 Suomen Punainen Risti Veripalvelu Culture of human embryonic cells
AU2009267964A1 (en) * 2008-07-11 2010-01-14 Glykos Finland Oy Culture of cells
US9694049B2 (en) * 2011-08-11 2017-07-04 Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The Unitversity Of Nevada, Reno Methods for treating muscular dystrophy
BR112017022715A2 (pt) 2015-04-21 2018-07-17 Consejo Nacional De Investigaciones Cientificas Y Tecn Conicet variante do polipeptídeo gal-1, ácido nucleico, composição farmacêutica, método para modular uma resposta imunológica e método para tratamento de um sujeito
JP2019537432A (ja) 2016-10-04 2019-12-26 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド 標的化エフェクタータンパク質およびその使用
US11407797B2 (en) 2017-10-11 2022-08-09 University Of Florida Research Foundation, Incorporated Modified gal-1 proteins and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006724A1 (fr) * 1998-07-31 2000-02-10 Kirin Beer Kabushiki Kaisha Medicaments permettant de soigner la neuropathie contenant de la galectine-1 ou ses derives comme substance active
WO2001088100A1 (fr) * 2000-05-16 2001-11-22 Kyowa Hakko Kogyo Co., Ltd. Nouvelle methode permettant de declencher une differentiation de cellules embryonnaires dans des cellules de l'ectoderme et leurs applications
JP2002325571A (ja) * 2001-04-27 2002-11-12 Purotekku:Kk 網膜の分化誘導方法
JP2002371005A (ja) * 2001-05-31 2002-12-26 Japan Science & Technology Corp MusashiによるNumbタンパク質発現抑制剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750376A (en) * 1991-07-08 1998-05-12 Neurospheres Holdings Ltd. In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny
US5968829A (en) * 1997-09-05 1999-10-19 Cytotherapeutics, Inc. Human CNS neural stem cells
US6436389B1 (en) * 1998-12-11 2002-08-20 The Salk Institute For Biological Studies Stimulation of cell proliferation by glycosylated cystatin C
WO2002086082A2 (en) * 2001-04-20 2002-10-31 Children's Hospital Of Orange County Isolation of neural stem cells using gangliosides and other surface markers
CN1458273A (zh) * 2002-01-16 2003-11-26 中国医学科学院中国协和医科大学血液学研究所 人胎儿背根神经节干细胞的分离、制备及应用
US8043853B2 (en) * 2002-08-14 2011-10-25 The Regents Of The University Of Michigan Postnatal gut neural crest stem cells
CA2494450A1 (en) * 2002-08-27 2004-03-11 Stemcells, Inc. Enriched central nervous system stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for such populations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006724A1 (fr) * 1998-07-31 2000-02-10 Kirin Beer Kabushiki Kaisha Medicaments permettant de soigner la neuropathie contenant de la galectine-1 ou ses derives comme substance active
WO2001088100A1 (fr) * 2000-05-16 2001-11-22 Kyowa Hakko Kogyo Co., Ltd. Nouvelle methode permettant de declencher une differentiation de cellules embryonnaires dans des cellules de l'ectoderme et leurs applications
JP2002325571A (ja) * 2001-04-27 2002-11-12 Purotekku:Kk 網膜の分化誘導方法
JP2002371005A (ja) * 2001-05-31 2002-12-26 Japan Science & Technology Corp MusashiによるNumbタンパク質発現抑制剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIRABAYASHI; KASAI, J BIOL CHEM, vol. 26, no. 8, pages 23648 - 23653
HIRABAYASHI; KASAI, J BIOL CHEM, vol. 268, pages 23648 - 23653
HORIE, H. ET AL.: "Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy", J.NEUROSCI., vol. 19, no. 22, 1999, pages 9964 - 9974, XP002983702 *
HORIE, H. ET AL.: "Identification of oxidized galectin-1 as an initial repair regulatory factor after axotomy in peripheral nerves", NEUROSCI.RES., vol. 38, no. 2, 2000, pages 131 - 137, XP001059710 *
INAGAKI, Y. ET AL.: "Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties", EUR.J.BIOCHEM., vol. 267, no. 10, 2000, pages 2955 - 2964, XP002983701 *
See also references of EP1674566A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210968A (ja) * 2006-02-10 2007-08-23 Keio Gijuku 神経幹細胞の増殖抑制剤
US7662385B2 (en) * 2006-02-10 2010-02-16 Keio University Agent for inhibiting proliferation of neural stem cells
WO2007114473A1 (ja) * 2006-04-05 2007-10-11 Keio University シグナル伝達系活性化剤
JP2007274955A (ja) * 2006-04-05 2007-10-25 Keio Gijuku シグナル伝達系活性化剤
US9439931B2 (en) 2006-11-30 2016-09-13 Medipost Co., Ltd Administering umbilical cord blood-derived mesenchymal stem cells to treat nerve injury
JP2014240388A (ja) * 2008-11-14 2014-12-25 メディポスト カンパニー リミテッド 間葉幹細胞またはその培養液を含む神経疾患の予防または治療用の組成物
US10238692B2 (en) 2008-11-14 2019-03-26 Medipost Co., Ltd Composition comprising a culture solution of mesenchymal stem cells for the treatment of neural diseases
JP2012029684A (ja) * 2010-06-30 2012-02-16 Cell Aid Kenkyusho:Kk 細胞の製造方法

Also Published As

Publication number Publication date
EP1674566A1 (en) 2006-06-28
ATE505539T1 (de) 2011-04-15
EP1674566A4 (en) 2007-01-17
EP1674566B1 (en) 2011-04-13
JP2012077092A (ja) 2012-04-19
JP5099288B2 (ja) 2012-12-19
US20070098701A1 (en) 2007-05-03
US7785596B2 (en) 2010-08-31
JPWO2005026343A1 (ja) 2007-11-08
DE602004032248D1 (de) 2011-05-26

Similar Documents

Publication Publication Date Title
JP2012077092A (ja) 神経幹細胞の生存及び/又は増殖及び神経突起伸張を促進する方法並びに促進剤、神経幹細胞を含む医薬組成物、検定方法、スクリーニング方法
Horner et al. Defining the NG2-expressing cell of the adult CNS
Billon et al. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRα1)
US5968829A (en) Human CNS neural stem cells
ES2235847T3 (es) Utilizacion de colagenasa en la preparacion de cultivos de celulas madre neuronales.
JP2005514926A (ja) 新規ほ乳類多分化能幹細胞および組成物、その調製方法および投与方法
US8257696B2 (en) Indefinite culture of human adult glia without immortalization and therapeutic uses thereof
US20100113357A1 (en) Platelet-derived growth factor-responsive neural precursor cells and progeny thereof
Pellegatta et al. The therapeutic potential of neural stem/progenitor cells in murine globoid cell leukodystrophy is conditioned by macrophage/microglia activation
Bensadoun et al. Neuroprotective effect of interleukin‐6 and IL6/IL6R chimera in the quinolinic acid rat model of Huntington's syndrome
US20060159670A1 (en) Pharmaceuticals containing multipotential precursor cells from tissues containing sensory receptors
AU770501B2 (en) Ependymal neural stem cells and method for their isolation
US20090136456A1 (en) Methods of treating neurodegenerative disorders
WO2015099206A1 (ko) 파브리 병의 유도-만능 줄기세포 모델 및 이의 용도
Lee et al. Role of FOXC1 in regulating APSCs self-renewal via STI-1/PrPC signaling
Elliott et al. The CNTF/LIF signaling pathway regulates developmental programmed cell death and differentiation of rod precursor cells in the mouse retina in vivo
KR101269125B1 (ko) 노치 신호 활성 유전자를 이용한 줄기세포의 증식 방법
US8043853B2 (en) Postnatal gut neural crest stem cells
Surendran et al. Mouse neural progenitor cells differentiate into oligodendrocytes in the brain of a knockout mouse model of Canavan disease
JP2004520051A (ja) 腸管神経系に由来する幹細胞および前駆細胞ならびにそれらの使用
JP2004520051A6 (ja) 腸管神経系に由来する幹細胞および前駆細胞ならびにそれらの使用
CA2213780C (en) Pharmaceuticals containing multipotential precursor cells from tissues containing sensory receptors
JPWO2008093827A1 (ja) 中枢神経障害治療剤及び中枢神経障害の治療方法
WO2000047718A1 (en) Isolation of stem cells and methods of use thereof
US20040092013A1 (en) Method of treating alzheimer&#39;s disease with cell therapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513873

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007098701

Country of ref document: US

Ref document number: 10571277

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004787726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004787726

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10571277

Country of ref document: US